初中数学二倍角的解法(初中数学等腰三角形的证法)

 2024-06-17  阅读 973  评论 0

摘要:判定一个三角形是等腰三角形,有两种基本方法:一是证明两角相等,二是证明两边相等。一、根据等角对等边来解决问题例1、如图1,AO平分∠BAC,∠1=∠2,试说明△ABC是等腰三角形。分析:题中有角平分线时,常自角平分线上一点作角两边的垂线。解析:如图2,由题设可知,∠1=∠2,∠3=∠4。仅有角相等,

初中数学二倍角的解法(初中数学等腰三角形的证法)(1)

判定一个三角形是等腰三角形,有两种基本方法:一是证明两角相等,二是证明两边相等。

一、根据等角对等边来解决问题

例1、如图1,AO平分∠BAC,∠1=∠2,试说明△ABC是等腰三角形。

初中数学二倍角的解法(初中数学等腰三角形的证法)(2)

分析:题中有角平分线时,常自角平分线上一点作角两边的垂线。

解析:如图2,由题设可知,∠1=∠2,∠3=∠4。仅有角相等,无论是证AB=AC还是证∠ABC=∠ACB都不够,因此想到作辅助线。由于AO为∠BAC的平分线,根据角平分线的性质,过点O向角的两边作垂线OE、OF,这样得到一对直角和一组边相等:OE=OF。

初中数学二倍角的解法(初中数学等腰三角形的证法)(3)

因为∠1=∠2,所以OB=OC。

所以Rt△OBE≌Rt△OCF(HL)。

所以∠5=∠6。

所以∠1 ∠5=∠2 ∠6,即∠ABC=∠ACB。

所以AB=AC。△ABC为等腰三角形。

二、两边相等

证两边相等,可以考虑下面四种方法。

1、通过三角形全等证线段相等

例2、如图3所示,在△ABC中,AB=AC,AD⊥BC于点D,E是AD延长线上的一点,连接BE、CE。试说明△EBC为等腰三角形。

初中数学二倍角的解法(初中数学等腰三角形的证法)(4)

解析:根据已知条件AB=AC,AD⊥BC,易知BD=CD。由于AD⊥BC,DE为公共边,可得△BDE≌△CDE(SAS)。所以BE=CE。△EBC为等腰三角形。

2、利用线段垂直平分线的性质证线段相等

如上面的例2,可以发现AE是线段BC的垂直平分线,由于线段垂直平分线上的点到线段两端点的距离相等,所以BE=CE。这样就省略去了证△BDE≌△CDE的步骤。

3、利用线段的和与差证线段相等

例3、如图4所示,在△ABC中,AB=AC,BE=CF,AD⊥BC于D。试问:线段AE与AF相等吗?

初中数学二倍角的解法(初中数学等腰三角形的证法)(5)

解析:由于AB=AC,AD⊥BC,由等腰三角形的性质,易知有BD=CD。结全BE=CF知ED=FD,故AD是线段EF的垂直平分线,于是AE=AF。

4、利用面积法证线段相等

例4、在△ABC中,AB=AC,P为BC的中点,PE⊥AB于E,PF⊥AC于F。试说明PE=PF。

分析:要证两线段相等,常用三角形全等来证。如果已知条件中有等腰三角形存在,那么等腰三角形三线合一的性质经常会用到。审题时一定要注意中点、垂直等条件。有时候已知条件不够,要适当添加辅助线,常作的辅助线是高(垂线)、平行线等。

解析:连接AP,如图5,根据题意知AP⊥BC,BP=CP。所以△ABP和△ACP的面积相等。而△ABP和△ACP的面积还可以分别通过把AB、AC当作底,PE、PF当作高来表示,即

初中数学二倍角的解法(初中数学等腰三角形的证法)(6)

AB·PE=AC·PF。而AB=AC,易得PE=PF。

初中数学二倍角的解法(初中数学等腰三角形的证法)(7)

--END--

初中数学二倍角的解法(初中数学等腰三角形的证法)(8)

初中数学二倍角的解法(初中数学等腰三角形的证法)(9)

,

版权声明:xxxxxxxxx;

原文链接:http://cn.tdroid.net/ceffbCz0EAwgDV1Y.html

发表评论:

管理员

  • 内容264587
  • 积分0
  • 金币0
关于我们
lecms主程序为免费提供使用,使用者不得将本系统应用于任何形式的非法用途,由此产生的一切法律风险,需由使用者自行承担,与本站和开发者无关。一旦使用lecms,表示您即承认您已阅读、理解并同意受此条款的约束,并遵守所有相应法律和法规。
联系方式
电话:
地址:广东省中山市
Email:
注册登录
注册帐号
登录帐号

Copyright © 2022 太卓开发网 Inc. 保留所有权利。 泰达科技网易库网

页面耗时0.1104秒, 内存占用1.33 MB, 访问数据库18次