排列问题习题(排列应用问题的分类与解法)

 2025-02-08  阅读 760  评论 0

摘要:【考试要求】1、理解排列、组合的概念;2、能利用计数原理推导排列数公式、组合数公式【微点提醒】1.解受条件限制的排列、组合题,通常有直接法(合理分类)和间接法(排除法).分类时标准应统一,避免出现重复或遗漏.2.对于分配问题,一般先分组,再分配,注意平均分组与不平均分组的区别,避免重复或遗漏.【规律

【考试要求】

1、理解排列、组合的概念;

2、能利用计数原理推导排列数公式、组合数公式

排列问题习题(排列应用问题的分类与解法)(1)

排列问题习题(排列应用问题的分类与解法)(2)

【微点提醒】

1.解受条件限制的排列、组合题,通常有直接法(合理分类)和间接法(排除法).分类时标准应统一,避免出现重复或遗漏.

2.对于分配问题,一般先分组,再分配,注意平均分组与不平均分组的区别,避免重复或遗漏.

排列问题习题(排列应用问题的分类与解法)(3)

排列问题习题(排列应用问题的分类与解法)(4)

排列问题习题(排列应用问题的分类与解法)(5)

排列问题习题(排列应用问题的分类与解法)(6)

【规律方法】 排列应用问题的分类与解法

(1)对于有限制条件的排列问题,分析问题时有位置分析法、元素分析法,在实际进行排列时一般采用特殊元素优先原则,即先安排有限制条件的元素或有限制条件的位置,对于分类过多的问题可以采用间接法.

(2)对相邻问题采用捆绑法、不相邻问题采用插空法、定序问题采用倍缩法是解决有限制条件的排列问题的常用方法.

排列问题习题(排列应用问题的分类与解法)(7)

排列问题习题(排列应用问题的分类与解法)(8)

【规律方法】 组合问题常有以下两类题型变化:

(1)“含有”或“不含有”某些元素的组合题型:“含”,则先将这些元素取出,再由另外元素补足;“不含”,则先将这些元素剔除,再从剩下的元素中去选取.

(2)“至少”或“至多”含有几个元素的组合题型:解这类题必须十分重视“至少”与“至多”这两个关键词的含义,谨防重复与漏解.用直接法和间接法都可以求解,通常用直接法分类复杂时,考虑逆向思维,用间接法处理.

排列问题习题(排列应用问题的分类与解法)(9)

考点三 分组、分配问题

排列问题习题(排列应用问题的分类与解法)(10)

【规律方法】

1.对于整体均分问题,往往是先分组再排列,在解题时要注意分组后,不管它们的顺序如何,都是一种情况,所以分组后一定要除以A(n为均分的组数),避免重复计数.

2.对于部分均分问题,解题时要注意重复的次数是均匀分组的阶乘数,即若有m组元素个数相等,则分组时应除以m!.

3.对于不等分问题,首先要对分配数量的可能情形进行一一列举,然后再对每一种情形分类讨论.在每一类的计数中,又要考虑是分步计数还是分类计数,是排列问题还是组合问题.

排列问题习题(排列应用问题的分类与解法)(11)

排列问题习题(排列应用问题的分类与解法)(12)

【反思与感悟】

1.对于有附加条件的排列、组合应用题,通常从三个途径考虑

(1)以元素为主考虑,即先满足特殊元素的要求,再考虑其他元素.

(2)以位置为主考虑,即先满足特殊位置的要求,再考虑其他位置.

(3)先不考虑附加条件,计算出排列数或组合数,再减去不合要求的排列数或组合数.

2.排列、组合问题的求解方法与技巧

(1)特殊元素优先安排;(2)合理分类与准确分步;(3)排列、组合混合问题先选后排;(4)相邻问题捆绑处理;(5)不相邻问题插空处理;(6)定序问题倍除法处理;(7)分排问题直排处理;(8)“小集团”排列问题先整体后局部;(9)构造模型;(10)正难则反,等价条件.

【易错防范】

1.区分一个问题属于排列问题还是组合问题,关键在于是否与顺序有关.如果与顺序有关,则是排列;如果与顺序无关,则是组合.

2.解组合应用题时,应注意“至少”、“至多”、“恰好”等词的含义.

排列问题习题(排列应用问题的分类与解法)(13)

排列问题习题(排列应用问题的分类与解法)(14)

排列问题习题(排列应用问题的分类与解法)(15)

排列问题习题(排列应用问题的分类与解法)(16)

排列问题习题(排列应用问题的分类与解法)(17)

排列问题习题(排列应用问题的分类与解法)(18)

排列问题习题(排列应用问题的分类与解法)(19)

排列问题习题(排列应用问题的分类与解法)(20)

,

版权声明:xxxxxxxxx;

原文链接:http://cn.tdroid.net/ce675Cz0HAwgEXlw.html

发表评论:

管理员

  • 内容265335
  • 积分0
  • 金币0
关于我们
lecms主程序为免费提供使用,使用者不得将本系统应用于任何形式的非法用途,由此产生的一切法律风险,需由使用者自行承担,与本站和开发者无关。一旦使用lecms,表示您即承认您已阅读、理解并同意受此条款的约束,并遵守所有相应法律和法规。
联系方式
电话:
地址:广东省中山市
Email:
注册登录
注册帐号
登录帐号

Copyright © 2022 太卓开发网 Inc. 保留所有权利。 泰达科技网易库网

页面耗时0.0825秒, 内存占用1.35 MB, 访问数据库18次