相似三角形培优题技巧(用好轴对称的性质)

 2026-01-01  阅读 102  评论 0

摘要:大家好,这里是周老师数学课堂,欢迎来到百家号学习!经典培优题1如图,将三角形纸片ABC沿直线DE折叠后,使得点B与点A重合,折痕分别交BC,AB于点D,E.如果AC=5cm,△ADC的周长为17cm,那么BC的长为( )。A.7cmB.10cmC.12cmD.22cm[解答]解:将△ABC沿直线DE

大家好,这里是周老师数学课堂,欢迎来到百家号学习!

相似三角形培优题技巧(用好轴对称的性质)(1)

经典培优题1

如图,将三角形纸片ABC沿直线DE折叠后,使得点B与点A重合,折痕分别交BC,AB于点D,E.如果AC=5cm,△ADC的周长为17cm,那么

BC的长为( )。

相似三角形培优题技巧(用好轴对称的性质)(2)

A.7cm

B.10cm

C.12cm

D.22cm

[解答]

解:将△ABC沿直线DE折叠后,使得点B与点A重合,

∴AD=BD,

∴AC=5cm,△ADC的周长为17cm,

∴AD CD=BC=17-5=12(cm).

故选:C.

[解析]

上题利用翻折变换的性质,根据题意得出AD=BD,进而利用AD CD=BC得出即可.

[知识清单:折叠的性质与运用]

⑴ 翻折变换(折叠问题)实质上就是轴对称变换.折叠的性质:折叠是一种对称变换,它属于轴对称,折叠前后图形的形状和大小不变,位置变化,对应边和对应角相等.

⑵在解决实际问题时,对于折叠较为复杂的问题可以实际操作图形的折叠,这样便于找到图形间的关系.首先清楚折叠和轴对称能够提供给我们隐含的并且可利用的条件。

解题时,我们常常设要求的线段长为x,然后根据折叠和轴对称的性质用含x的代数式表示其他线段的长度,选择适当的直角三角形,运用勾股定理列出方程求出答案.我们运用方程解决时,应认真审题,设出正确的未知数。

相似三角形培优题技巧(用好轴对称的性质)(3)

经典培优题2

如图,四边形ABCD中,∠BAD=120°,∠B=∠D=90°,在BC、CD上分别找一点M、N,使△AMN周长最小时,则∠AMN ∠ANM的度数为( )。

相似三角形培优题技巧(用好轴对称的性质)(4)

A.130°

B.120°

C.110°

D.100°

[解答]

作A关于BC和CD的对称点A′,A”,连接A'A",交BC于M,交CD于N,则A'A”即为△AMN的周长最小值。作DA延长线AH,

相似三角形培优题技巧(用好轴对称的性质)(5)

∵∠DAB=120°,

∴∠HAA'=60°,

∴∠AA'M ∠A"=∠HAA'=60°,

∵∠MA'A=∠MAA',∠NAD=∠A",

且∠MA'A ∠MAA'=∠AMN,

∠NAD ∠A"=∠ANM,

∴∠AMN ∠ANM

=∠MA'A ∠MAA' NAD ∠A"

=2(∠AA′M ∠A")=2×60°=120°,

故选:B.

[解析]

根据题意要使△AMN的周长最小,即利用点的对称性,让三角形的三边在同一直线上,作出A关于BC和CD的对称点A',A”,即可得出∠AAM ∠A"=∠HAA'=60°,进而得出∠AMN ∠ANM=2(∠AAM ∠A")即可得出答案.

[知识点清单:最短路线问题]

解几条线段之和最小(短)类问题,一般是运用轴对称变换将处于直线同侧的点转化为直线异侧的点,从而把两条线段的位置关系转换,再根据两点之间线段最短或垂线段最短来确定方案,使两条线段之和转化为一条线段。

今天的分享就到这里,欢迎大家在评论区留下您的思路,让我们共同讨论,也许您的方法是最棒的。喜欢文章记得分享哦!

相似三角形培优题技巧(用好轴对称的性质)(6)

,

版权声明:xxxxxxxxx;

原文链接:http://cn.tdroid.net/cedabCz0GAAoCU1I.html

发表评论:

管理员

  • 内容333566
  • 积分0
  • 金币0
关于我们
lecms主程序为免费提供使用,使用者不得将本系统应用于任何形式的非法用途,由此产生的一切法律风险,需由使用者自行承担,与本站和开发者无关。一旦使用lecms,表示您即承认您已阅读、理解并同意受此条款的约束,并遵守所有相应法律和法规。
联系方式
电话:
地址:广东省中山市
Email:
注册登录
注册帐号
登录帐号

Copyright © 2022 太卓开发网 Inc. 保留所有权利。 泰达科技网易库网

页面耗时0.1085秒, 内存占用1.34 MB, 访问数据库18次