初中数学动点最值问题集锦归类(初中数学最短路径)

 2024-09-27  阅读 212  评论 0

摘要:在上篇文章《初中数学:不同背景下的最短路径问题解题方法和技巧》中,我们主要讨论了只有一个动点的最短路径问题,今天,我们就来讨论[最短路径]多动点问题解题策略。一、一个定点,两个动点策略1、固定一动点,利用将军饮马模型作定点关于另一动点的对称点;然后利用垂线段最短求解例1、如图,矩形ABCD中,AD=

在上篇文章《初中数学:不同背景下的最短路径问题解题方法和技巧》中,我们主要讨论了只有一个动点的最短路径问题,今天,我们就来讨论[最短路径]多动点问题解题策略。

初中数学动点最值问题集锦归类(初中数学最短路径)(1)

一、一个定点,两个动点

策略1、固定一动点,利用将军饮马模型作定点关于另一动点的对称点;然后利用垂线段最短求解

例1、如图,矩形ABCD中,AD=5,∠CAB=30º,点P和Q分别是线段AC和CD上的动点,则AQ PQ的最小值是多少?

初中数学动点最值问题集锦归类(初中数学最短路径)(2)

初中数学动点最值问题集锦归类(初中数学最短路径)(3)

策略2、分别作定点关于两动点所在直线的对称点.利用两点之间线段最短求出最值

例2、如图,△ABD是边长为3的等边三角形,E,F分别是边AD、AB上的动点,若∠ADC=∠ABC=90º,则△CEF周长最小值是多少?

初中数学动点最值问题集锦归类(初中数学最短路径)(4)

初中数学动点最值问题集锦归类(初中数学最短路径)(5)

二、两个定点、两个动点

策略:当题中出现两定两动时,应作两次定点关于动点所在直线的对称点.利用两点之间线段最短求出最值。

初中数学动点最值问题集锦归类(初中数学最短路径)(6)

三、三个动点

策略:将一动点作为定点,作关于某一动点所在直线的对称点,然后考虑点点,点线之间的最短问题.

初中数学动点最值问题集锦归类(初中数学最短路径)(7)

好了,今天的内容就分享到这里,如果您有疑问,可以在文章下方留言,欢迎继续关注,精彩还将继续!

,

版权声明:xxxxxxxxx;

原文链接:http://cn.tdroid.net/ce10eCz0EBwwMV10.html

发表评论:

管理员

  • 内容265292
  • 积分0
  • 金币0
关于我们
lecms主程序为免费提供使用,使用者不得将本系统应用于任何形式的非法用途,由此产生的一切法律风险,需由使用者自行承担,与本站和开发者无关。一旦使用lecms,表示您即承认您已阅读、理解并同意受此条款的约束,并遵守所有相应法律和法规。
联系方式
电话:
地址:广东省中山市
Email:
注册登录
注册帐号
登录帐号

Copyright © 2022 太卓开发网 Inc. 保留所有权利。 泰达科技网易库网

页面耗时0.0956秒, 内存占用1.33 MB, 访问数据库18次